POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name		
Inżynieria reaktorów (Cher	nical reactors engineering)	
Course		
Field of study		Year/Semester
Technologia chemiczna (Chemical Technology)		I/2
Area of study (specialization)		Profile of study
Technologia chemiczna ogólna (General chemical technology)		general academic
Level of study		Course offered in
Second-cycle studies		Polish
Form of study		Requirements
part-time		compulsory
Number of hours		
Lecture	Laboratory classes	Other (e.g. online)
10		
Tutorials	Projects/seminars	
	10	
Number of credit points		
2		
Lecturers		
Responsible for the course/lecturer: Responsib		le for the course/lecturer:
dr hab. inż. Krzysztof Alejsk	ki, prof. PP	
Prerequisites Fundamentals of Chemical	Reaction Engineering	

Course objective

Obtaining knowledge and skills in the calculation of real flow reactors, heterogeneous reactors and bioreactors.

Course-related learning outcomes

Knowledge

1. Has structured and theoretically founded knowledge of advanced chemical reactor models. (K_W03, K_W04)

2. Has knowledge of the phenomena occurring in heterogeneous reactors and bioreactors. (K_W04, K_W11)

Skills

1. Has the ability to select an advanced reactor or bioreactor model for a specific proces. (K_U09, K_U10)

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

2. Is able to design a real, heterogeneous reactor or bioreactor. (k_U01, K_U09)

Social competences

- 1. Is aware of the need for lifelong learning and professional development. (K_K01)
- 2. Adheres to all teamwork rules; is aware of responsibility

for joint ventures and achievements in professional work.(K_K04)

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Knowledge acquired during the lecture and skills are verified during the written exam. Passing threshold: 50% of points. Knowledge, skills and competences within project classes are verified on the basis of projects made in two-man teams.

Programme content

- 1. Characteristics of real reactors.
- 2. Functions of the distribution of residence time in reactors.
- 3. Calculation of the conversion in real reactors.
- 4. Kinetics of heterogeneous reactions.
- 5. Calculation of heterogeneous reactors.
- 6. Bioreactors.

Teaching methods

Lecture: presentation with discussion on the board.

Project: implementation of the reactor design in two-man teams.

Bibliography

Basic

- 1. J. Szarawara, J. Piotrowski, Podstawy teoretyczne technologii chemicznej, Warszawa, PWN 2010.
- 2. Podstawy technologii chemicznej i inżynierii reaktorów, pod red. M. Wiśniewskiego
- i K. Alejskiego, skrypt, Wydawnictwo Politechniki Poznańskiej, Poznań 20017.
- 3. Fogler H. Scott, Elements of Chemical Reaction Engineering, Prentice Hall 2016.

Additional

1. A. Burghardt, G. Bartelmus, Inżynieria reaktorów chemicznych, PWN Warszawa 2001.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	60	2,0
Classes requiring direct contact with the teacher	25	0,7
Student's own work (literature studies, preparation for tests/exam,	35	1,25
project preparation) ¹		

¹ delete or add other activities as appropriate